From: Karl Lui Barrus <klbarrus@owlnet.rice.edu>
To: cypherpunks@toad.com
Message Hash: fc0ab586ba2a206e85f35bcdd8d1fcea0f9e7291af2cad3c39639e99efa52cc1
Message ID: <9310211724.AA10107@arcadien.owlnet.rice.edu>
Reply To: N/A
UTC Datetime: 1993-10-21 17:27:56 UTC
Raw Date: Thu, 21 Oct 93 10:27:56 PDT
From: Karl Lui Barrus <klbarrus@owlnet.rice.edu>
Date: Thu, 21 Oct 93 10:27:56 PDT
To: cypherpunks@toad.com
Subject: MATH: factoring, # of bits
Message-ID: <9310211724.AA10107@arcadien.owlnet.rice.edu>
MIME-Version: 1.0
Content-Type: text/plain
-----BEGIN PGP SIGNED MESSAGE-----
>First, we need an equation that tell us how difficult it is, in # of
>operations, to factor a number of N bits. eg: N_ops(N) = # of
>operations it will take.
I think the fastest method that anyone admits to, by Odzyklo
(spelling?), has an order of magnitude defined by:
e^(sqrt(ln(x) ln(ln(x))))
I've been dusting off my Mathematica skills working on the crypto
techniques Matt posts :-) so it looks like this in Mathematica:
f[x_] := N[Exp[Sqrt[Log[x] Log[Log[x]]]]]
x in bits difficulty
200 2.27 E11
384 5.54 E16 <- PGP casual
512 6.69 E19 <- PGP commercial
664 1.18 E23
1000 1.75 E29
1024 4.42 E29 <- PGP military
1500 8.11 E36
2000 3.11 E43
3000 5.49 E54
4000 2.44 E64
6000 7.06 E80
8000 8.99 E94
I don't know how many seconds until the end of the universe, but I
think you'll be covered using an 8000 bit key :-)
-----BEGIN PGP SIGNATURE-----
Version: 2.3a
iQCVAgUBLMbFXYOA7OpLWtYzAQEwrwP9G60hCktxcj7MwkOV2H7QPQ1+i+j5ceTK
DEcj74ZFZdsp1vouMxtsN+zvqkdy1+DTzNUuXusWKhogDLFEPTuASZD3tcFgkoUT
Uk0B805mJi/gfiBa7+CBWHgjF0T7NSZe1lTjqfru1u+XeU/7iAq+erU0ojydL/xi
tqBAZZg3gEs=
=wkBt
-----END PGP SIGNATURE-----
Return to October 1993
Return to “Karl Lui Barrus <klbarrus@owlnet.rice.edu>”
1993-10-21 (Thu, 21 Oct 93 10:27:56 PDT) - MATH: factoring, # of bits - Karl Lui Barrus <klbarrus@owlnet.rice.edu>