From: Damien.Doligez@inria.fr (Damien Doligez)
To: cypherpunks@toad.com
Message Hash: 1e8cf9490d587f16dbbc934823bcefb86b327855a7554e0afaa4e15c43f5646f
Message ID: <9508291203.AA24840@couchey.inria.fr>
Reply To: N/A
UTC Datetime: 1995-08-29 17:38:03 UTC
Raw Date: Tue, 29 Aug 95 10:38:03 PDT
From: Damien.Doligez@inria.fr (Damien Doligez)
Date: Tue, 29 Aug 95 10:38:03 PDT
To: cypherpunks@toad.com
Subject: Probability calculations
Message-ID: <9508291203.AA24840@couchey.inria.fr>
MIME-Version: 1.0
Content-Type: text/plain
>From: Scott Brickner <sjb@austin.ibm.com>
>% k-space random sequential percent
>searched method method difference
[...]
>99.9 115892899 16760439 591
But you fail to take into account the probability that the search will
have to go that far.
This is how I compute the expected cost of the random search.
The probability of finding the key upon searching the k-th segment is:
k-1
p(k) = (1 - 1/n) . 1/n
The expected cost is the sum of all possible costs, weighted by their
probability:
___ ___
\ \ i-1
e = > i p(i) = 1/n > i (1 - 1/n)
/__ /__
i = 1..oo i = 1..oo
___ ___
\ \ i-1
= 1/n > > (1 - 1/n)
/__ /__
i = 1..oo j = 1..i
___
\ i-1
= 1/n > (1 - 1/n)
/__
{(i,j) | 1 <= j <= i}
___ ___
\ \ i-1
= 1/n > > (1 - 1/n)
/__ /__
j = 1..oo i = j..oo
___ ___
\ j-1 \ i
= 1/n > (1 - 1/n) . > (1 - 1/n)
/__ /__
j = 1..oo i = 0..oo
\_______________/ \_______________/
n n
e = n
This means that if you do many random searches (with a good RNG), the
average cost of one search must be n.
Any errors in the above ?
-- Damien
Return to August 1995
Return to “Damien.Doligez@inria.fr (Damien Doligez)”
1995-08-29 (Tue, 29 Aug 95 10:38:03 PDT) - Probability calculations - Damien.Doligez@inria.fr (Damien Doligez)