1995-09-26 - Primality verification needed

Header Data

From: Phil Karn <karn@qualcomm.com>
To: ipsec-dev@eit.com
Message Hash: d4b81a37686061cdc331a7053db31ea3e640508136545cb2963a3e273d6042da
Message ID: <199509260050.RAA14732@servo.qualcomm.com>
Reply To: N/A
UTC Datetime: 1995-09-26 13:31:45 UTC
Raw Date: Tue, 26 Sep 95 06:31:45 PDT

Raw message

From: Phil Karn <karn@qualcomm.com>
Date: Tue, 26 Sep 95 06:31:45 PDT
To: ipsec-dev@eit.com
Subject: Primality verification needed
Message-ID: <199509260050.RAA14732@servo.qualcomm.com>
MIME-Version: 1.0
Content-Type: text/plain


Hi. I've generated a 2047-bit "strong" prime number that I would like to
use with Diffie-Hellman key exchange. I assert that not only is this number
'p' prime, but so is (p-1)/2.

I've used the mpz_probab_prime() function in the Gnu Math Package (GMP) version
1.3.2 to test this number. This function uses the Miller-Rabin primality test.
However, to increase my confidence that this number really is a strong prime,
I'd like to ask others to confirm it with other tests. Here's the number in hex:

72a925f760b2f954ed287f1b0953f3e6aef92e456172f9fe86fdd8822241b9c9788fbc289982743e
fbcd2ccf062b242d7a567ba8bbb40d79bca7b8e0b6c05f835a5b938d985816bc648985adcff5402a
a76756b36c845a840a1d059ce02707e19cf47af0b5a882f32315c19d1b86a56c5389c5e9bee16b65
fde7b1a8d74a7675de9b707d4c5a4633c0290c95ff30a605aeb7ae864ff48370f13cf01d49adb9f2
3d19a439f753ee7703cf342d87f431105c843c78ca4df639931f3458fae8a94d1687e99a76ed99d0
ba87189f42fd31ad8262c54a8cf5914ae6c28c540d714a5f6087a171fb74f4814c6f968d72386ef3
56a05180c3bec7ddd5ef6fe76b1f717b

The generator, g, for this prime is 2.

Thanks!

Phil Karn






Thread